

Oxidation-Reduction & Electrochemistry

Session Slides with Notes

This PDF includes the teaching slides the Integrated MCAT Course (www.integrated-mcat.com). Many of the figures used in this presentation are creations of the Integrated MCAT Course, published under a Creative Commons Attribution NonCommercial ShareAlike License. Attribution information for the public license figures which are not our creations, as well as downloadable teaching slides, can be found at www.integrated-mcat.com/image_archive.php.

					发		_ ,			-2	-4:	= 0	4 1	jō.	Нц		
H 2.20			m 4 5	ے د د	-0	.2	+ 0	_		Ū	+4				•		He
Li 0.98	Be 1.57				+1"			_	<u>·</u>	\vdash	74	B 2.04	C 2.55	N 3.04	O 3.44	F 3.98	Ne
Na 0.93	Mg 1.31									10	,	AI 1.61	Si 1.90	P 2.19	\$ 2.58	CI 3.16	Ar
K 0.82	Ca 1.00	Sc 1.36	Ti 1.54	V 1.63	Cr 1.66	Mn 1.55	Fe 1.83	Co 1.88	Ni 1.91	Cu 1.90	Zn 1.65	Ga 1.81	Ge 2.01	As 2.18	Se 2.55	Br 2.96	Kr 3.00
Rb 0.82	Sr 0.95	Y 1.22	Zr 1.33	Nb 1.6	Mo 2.16	Tc 1.9	Ru 2.2	Rh 2.28	Pd 2.20	Ag 1.93	Cd 1.69	In 1.78	Sn 1.96	Sb 2.05	Te 2.1	1 2.66	Xe 2.60
Cs 0.79	Ba 0.89	•	Hf 1.3	Ta 1.5	W 2.36	Re 1.9	Os 2.2	lr 2.20	Pt 2.28	Au 2.54	Hg 2.00	TI 1.62	Pb 2.33	Bi 2.02	Po 2.0	At 2.2	Rn 2.2
Fr 0.7	Ra 0.9	••	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Uub	Uut	Uuq	Uup	Uuh	Uus	Uuo
٠	La 1.1	Ce 1.12	Pr 1.13	Nd 1.14	Pm 1.13	Sm 1.17	Eu 1.2	Gd 1.2	Tb 1.1	Dy 1.22	Ho 1.23	Er 1.24	Tm 1.25	Yb 1.1	Lu 1.27		
	Ac 1.1	Th 1.3	Pa 1.5	U 1.38	Np 1.36	Pu 1.28	Am 1.13	Cm 1.28	Bk 1.3	Cf 1.3	Es 1.3	Fm 1.3	Md 1.3	No 1.3	Lr 1.3		

CuSO₄ + 2NaOH \longrightarrow Cu(OH)₂ + Na₂SO₄ \longrightarrow metathesis reaction

Fe₂O₃ + 3CO
$$\longrightarrow$$
 2Fe + 3CO₂

oxidation-reduction reaction

Iran oxidized carbon. Colon induced iron. $2 \operatorname{Cu}(s) + \operatorname{O}_{2}(g) \longrightarrow 2 \operatorname{CuO}(s)$

The oxidation number of an atom is zero in a neutral substance that contains atoms of only one element.

 O_2

 H_2

C (graphite)

The oxidation number of simple ions is equal to the charge on the ion.

Na⁺

CI [–]

 Mg^{2+}

The oxidation number of hydrogen is +1 when it is combined with a nonmetal.

 CH_4

 NH_3

 H_2O

The oxidation number of hydrogen is -1 when combined with a metal.

NaH

 MgH_2

LiAlH₄

Aydride

In compounds the metals in Group IA have an oxidation number of +1.

LiF

Na₂S

In compounds the metals in Group IIA have an oxidation number of +2.

 MgH_2

CaCO₃

BeO

Oxygen usually has an oxidation number of -2.

$$H_2O$$
 CO_2 MgO
 $V = 0$
 $V = 0$

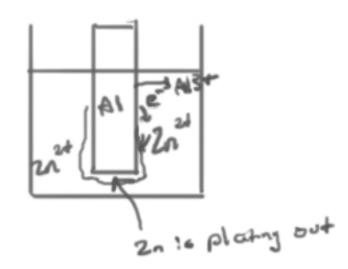
Halogens usually has an oxidation number of -1

 AIF_3

HBr

 $ZnCl_2$

Nat 7 hypochlorite


The sum of the oxidation numbers in a neutral compound is zero, and the sum of the oxidation numbers in a polyatomic ion is equal to the charge on the ion.

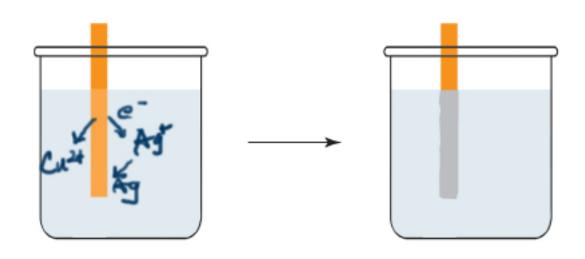
 SO_4^{-2} H_2CO_3 $KMnO_4$

 $2 \text{ Fe} + 3 \text{ Cl}_2 \longrightarrow 2 \text{ FeCl}_3$

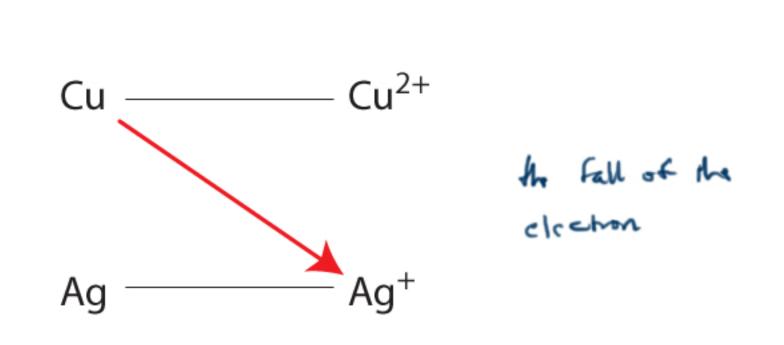
 $4 \text{ Al} + 3 \text{ O}_2 \longrightarrow 2 \text{ Al}_2 \text{O}_3$

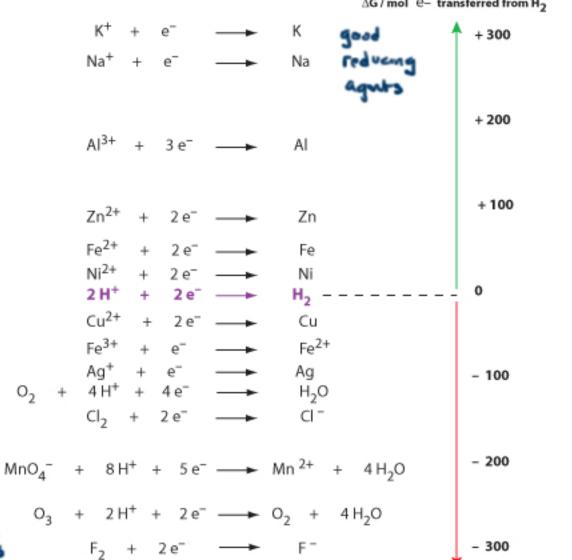
$2 \text{ Al}_2 + 3 \text{ Zn}^{2+} \longrightarrow 2 \text{ Al}^{3+} + 3 \text{ Zn}^{3+}$ $2 \text{ Al}_2 + 3 \text{ Zn}^{2+} \longrightarrow 2 \text{ Al}^{3+} + 3 \text{ Zn}^{3+}$

2 Al + Fe₂O₃ \longrightarrow Al₂O₃ + 2 Fe


Fe - oxidizing agent
Al - reducing equat

 ** O $_{41}$ $_{45}$ $_{2}$ $_{41}$ $_{45}$ $_{2}$ $_{41}$ $_{22}$ $_{3}$ Ag + 4 HNO₃ \longrightarrow 3 AgNO₃ + 2 H₂O + NO


Oxidizing agent - N (one of how)
Reducing agent - Ag


Cu(s) + 2 Ag⁺(aq)
$$\longrightarrow$$
 Cu²⁺(aq) + 2 Ag(s)

Ag⁺ \longrightarrow Cu

$$Cu(s) + 2 Ag^{+}(aq) \longrightarrow Cu^{2+}(aq) + 2 Ag(s)$$

Reacting potassium metal with pure water produces

- a. potassium oxide, K₂O
- a basic solution
 an acidic solution
- d. oxygen gas

Reducing Agents

LiAlH₄

lithium aluminium hydride

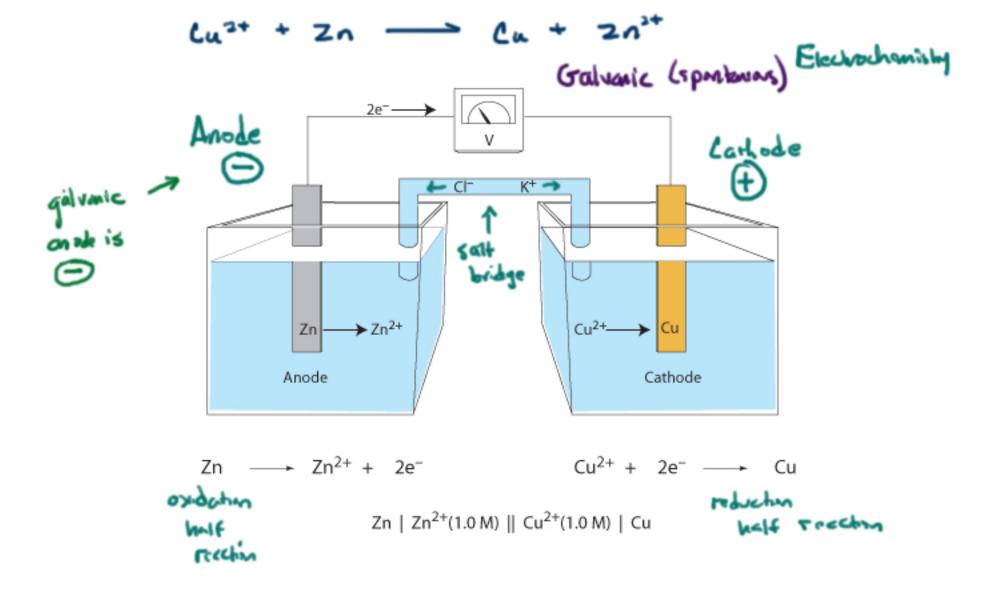
NaHg

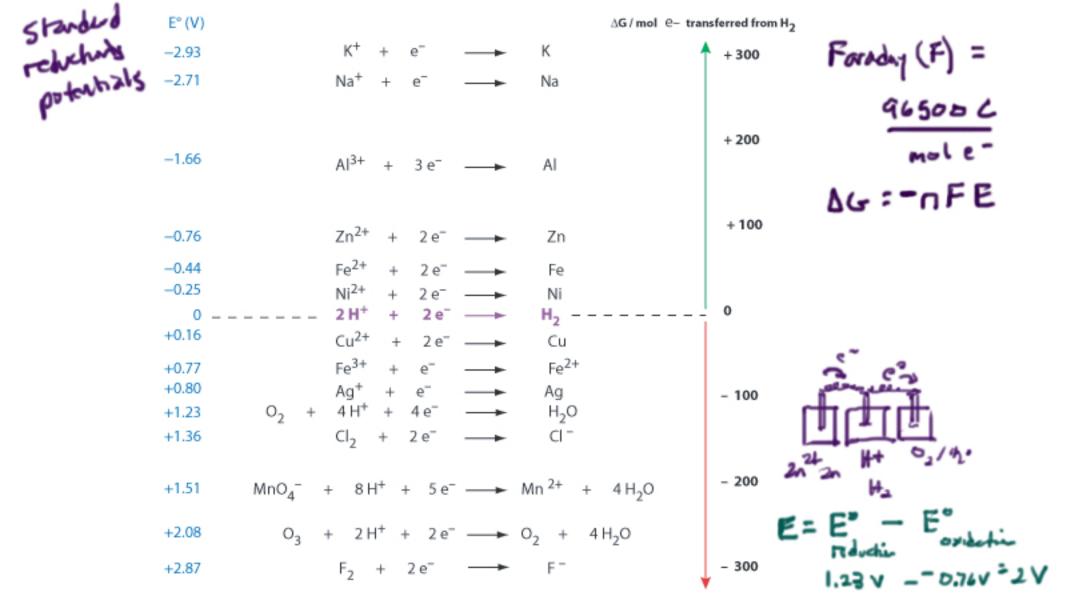
sodium amalgum

NaBH₄

sodiuim borohydride

 H_2

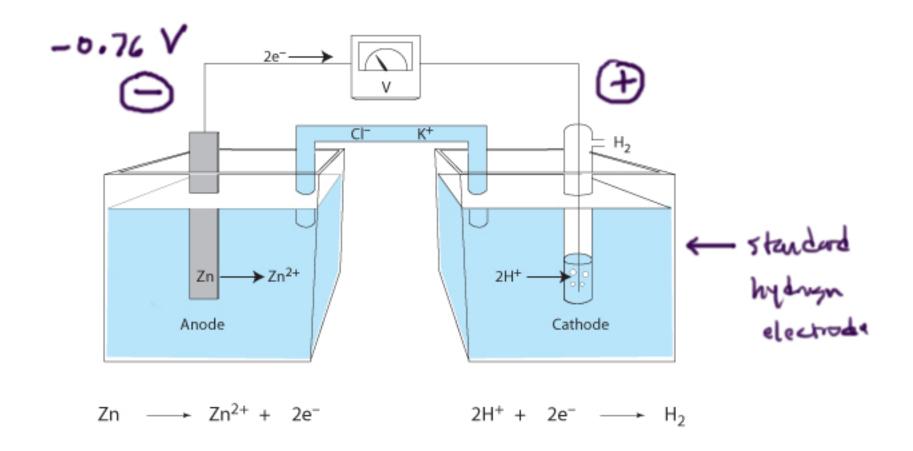

hydrogen


Metals

Carbon

Hydrocarbons

Oxidizing Agents



The anode and cathode reactions for the silver oxide battery are respectively as follows:

$$Zn(s) + 2OH^{-}(aq) \longrightarrow Zn(OH)_{2}(s) + 2e^{-}$$

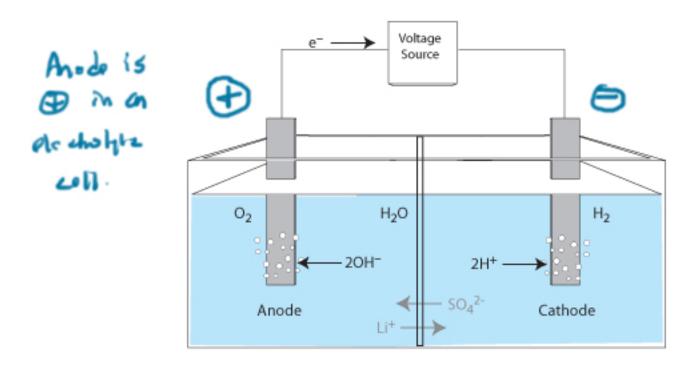
 $Ag_{2}O(s) + H_{2}O + 2e^{-} \longrightarrow 2Ag(s) + 2OH^{-}(aq)$

The standard reduction potential of Zn²⁺ is –0.762, and the standard reduction potential of Ag+ is 0.800 V. What is the approximate emf of the silver oxide battery?

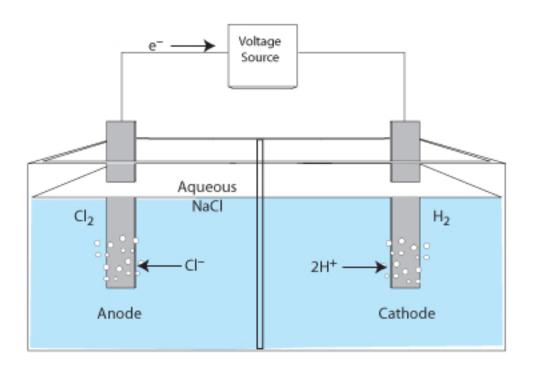
- a. 0.04 V
- b. 0.8 V
- C. 1.6 V

Stoichonery in electrochemistry often mobiles anothery to DC current parameters.

mole

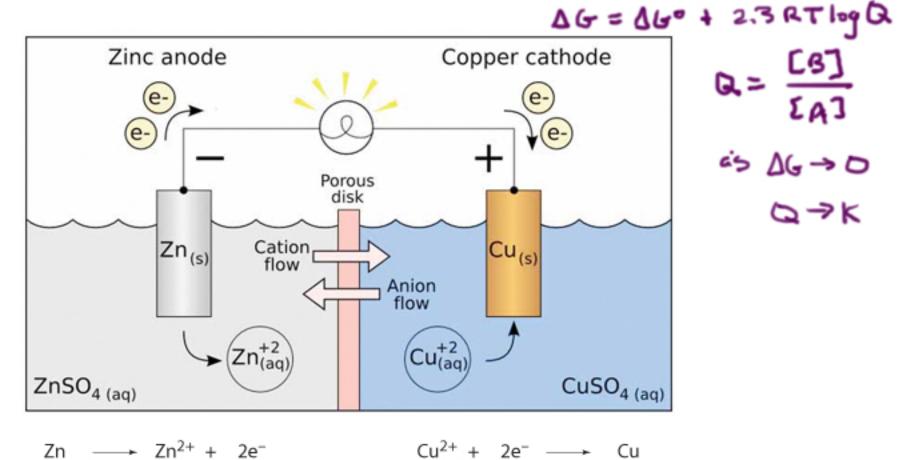

Commercial aluminum is formed electrolytically from aluminum oxide (Al_2O_3) , which is reduced at the cathode. Approximately how long must a current of 965A be applied to form

→ 27 g of aluminum?


(Note that 96500 $C = 1 \text{ mole e}^-$)

- a. 1 second
- b. 1 1/2 minutes
- ©.) 5 minutes
- d. 300,000 seconds

Electrolytic Call


$$2H_2O \longrightarrow O_2 + 4H^+ + 4e^- \qquad 2H^+ + 2e^- \longrightarrow H_2$$

 $2CI^- \longrightarrow CI_2 + 2e^- \qquad 2H^+ + 2e^- \longrightarrow H_2$

Electolytis of brine (concentrated Na CI)

Number
$$\rightarrow$$
 $\Delta E = \Delta E^{o} - \frac{0.0592 \text{ V}}{n} \log Q$

